Jump to: navigation, search

Difference between revisions of "Using Anti-Ghost"

(Choosing images)
(Manually Adjusting Anti-Ghost)
Line 64: Line 64:
 
Mask tool is often confused with a painter tool, but it's not. Is more powerful on simple case but can be less intuitive in hard cases (see next session).
 
Mask tool is often confused with a painter tool, but it's not. Is more powerful on simple case but can be less intuitive in hard cases (see next session).
  
 +
 +
{|
 +
|-
 +
| [[Image:smartcut-marker-green.png|left|thumb|900px]]
 +
|}
 +
 +
 +
{|
 +
|-
 +
| [[Image:smartcut-marker-red.png|left|thumb|900px]]
 +
|}
 +
 +
 +
{|
 +
|-
 +
| [[Image:smartcut-marker-result.png|left|thumb|900px]]
 +
 +
|}
 
=== Color Correction influence ===
 
=== Color Correction influence ===
  

Revision as of 15:50, 10 March 2014


The concept

Anti-Ghost is the smart image-cutting algorithm (first appeared in Autopano 2.5).


During the blend of stitched images, the layered pixels are not necessarily identical.
This can be caused by stitching problems (when nodal point is not respected, when lens distortion is hard to correct...) and/or from objects in the picture moving between shots.

The Anti-Ghost is designed to find a cutting path between images in order to avoid blending pixels that don’t match.
The “smart” part is choosing a cut that preserves the integrity of the photographed subjects as much as possible.


Introduction

This new algorithm replaces the cutting step performed by Smartblend before Autopano 2.5 was released.
The results are not always perfect (or don’t always look quite as we expected), we will show a few possibilities that can help guide cutting decisions.
The giga-advantage of the new algorithm is that it can handle Gigapixel images, which Smartblend can’t do. The last part will illustrate this using the image Paris 26 gigapixels.


Manually Adjusting Anti-Ghost

For illustrating anti-ghost adjustments, we will work with following project which represent a biker in action with a lot of de-ghosting possibilities.

Smartcut-project.gif

Following picture is the default rendering computed by Autopano. We can't really said why a biker is kept and not another one but proposed result do not have ghosting issue.

Smartcut-default.png

Even if the result is satisfying, we will show how to guide Autopano in his choices.

Choosing images

When there are sufficient areas of overlap, it is often useful to delete certain images in order to facilitate Anti-Ghost’s selections.

Tutorial2-trial-250-corrected.gif


With fewer constraints to reconcile, the panorama now appears as expected.

Tutorial2-trial-corrected.jpg


Mask edition tool (Giga only)

Now we will keep all pictures and act with markers of mask tools to guide anti-ghost choices.

Mask tool is often confused with a painter tool, but it's not. Is more powerful on simple case but can be less intuitive in hard cases (see next session).


Smartcut-marker-green.png


Smartcut-marker-red.png


Smartcut-marker-result.png

Color Correction influence

When there is not as much overlap as in the previous example, it is not possible to delete an image in its entirety to guide Anti-Ghost:
In the picture below, a moving flag is situated in an area of overlap. Unlike the previous example, it is not possible to delete an image without drastically altering the overall panorama.

Tutorial2-flag.gif

Here is the rendering obtained when color correction is not applied:

Anti-Ghost chose to keep the flag from the image of the zenith (image 7), whereas we would prefer to keep the one from the central image (image 1).
In addition, this cutting selection does not compensate for the fit error around the flagpole.

Tutorial2-flag.jpg

This time, if we apply color correction, Anti-Ghost’s choices are different and yield the visual result we expected:

Tutorial2-flag-color.jpg

It’s partly by chance that color correction makes it possible to keep the right flag. But what’s interesting here is to understand how color correction influenced Anti-Ghost’s choice:
In order to select the best cutting path, the algorithm is based on analysis of the differences between the images. When there are differences in exposure and/or white balance between two images, Anti-Ghost is forced to find the cutting path in the places where the images are alike.

In the first example, without color correction, the hue of the sky in the zenith (image 7) is quite different from the hue in the central image (image 1). Therefore it’s less of a problem to make a cutting error involving a few pixels around the flagpole than to keep compounding differences by trying to blend the sky.

In the second example, color correction makes it possible to harmonize the hues in the sky, meaning it’s less of a problem to cut in the sky. Anti-Ghost chooses to cut the sky rather than cutting around the flagpole, where the adjustment error is now more difficult.


Adding an alpha layer

Using the same example, let’s imagine that even with color correction, Anti-ghost still doesn’t keep the “right” flag.
The idea is to get rid of the data superimposed on the object we want to keep. Thus, Anti-Ghost will have no other option than to keep it and find the best cutting path around this object.


Here, the zenith (Image 7) has been modified. An alpha layer has been painted over the area that is expected to overlap the flag in the central image (Image 1) and converted to a format that supports transparency (tif or png, for instance).
Note: Be careful, because some image editors lose EXIF information, you will need to set it manually in Image Properties (in this example, fisheye information may be lost).

Tutorial2-flag-alpha.png

Here is the stitching when the original zenith is replaced by the one with the alpha painted in.

Tutorial2-flag-corrected.jpg

It is not always easy to spot overlap zones in the initial images (not distorted by the assembly). We plan to add a tool to be directly integrated into Autopano that will guide Anti-Ghost’s selections.

Using Gigapixel

As stated in the introduction, the new Anti-Ghost can be applied to Gigapixel images. We rendered the image Paris 26 Gigapixels, originally created with Autopano 2.0, using Autopano 2.5.
This image will soon be available on a new site. Meanwhile, here are some screenshots of the new rendering.
You can try finding these screenshots in the original image if you would like to compare the results: Paris 26 Gigapixels


The first two captures illustrate Anti-Ghost’s effectiveness. Vehicles and people were retained in their entirety. Blurry zones appearing in the rendering created with Autopano 2.0 are gone.

Tutorial2-paris-cars.png
Tutorial2-paris-workers.png


This last screenshot shows that some errors still remain. This is generally because some problems still can’t be solved:

The front end of an object appears in a non-overlapping zone (which must be retained) but the other end doesn’t appear in the adjacent image because in a Gigapixel image, the time gap between shots of adjacent images can be very long.

Tutorial2-paris-ghost.png








Technical Support / Autopano Pro Documentation / Autopano Giga Documentation